

ИБП Eaton 9390 Marine - Eaton 9390 Marine UPS - Листовка

Постоянная ссылка на страницу: https://eaton-power.ru/catalog/tower/eaton-9390-marine/

Eaton 9390M UPS

40 - 160 kVA

Advanced vessel or rig power protection for:

- Navigation systems
- Emergency lightning
- Computer systems
- General Services

Double conversion UPS

Qualified design for marine and offshore environment

- · Compact design for saving space
- Easy to install, mounting rails can be bolted or welded to the deck/bulk head
- IP22 protection class
- Vibration absorbers under and at the back of the cabinet
- Maintenance from the front

Premium power performance

- Double conversion provides the highest level of protection available by isolating the output power from all input anomalies.
- Active power factor correction (PFC) provides 0,99 input power factor and less than 4,5% ITHD, thus eliminating interference with other critical equipment in the same network and enhancing compatibility with generators.
- The UPS is optimized for protecting modern 0,9 p.f. rated IT equipment without the need to oversize.

True reliability

- Patented Powerware HotSync® technology makes possible to parallel up to four UPSs to increase availability or add capacity. The technology enables load sharing without any communication line, thus eliminating single point of failure.
- ABM® technology charges batteries only when necessary, preventing batteries corrosion and prolonging batteries service life by up to 50%.
- Internal automatic static bypass switch

Extensive configurability

- Configurable to frequency converter operation (50 → 60 Hz and 60 → 50 Hz)
- A multilingual graphical LCD display makes possible to monitor the UPS status easily.
- Wide software and connectivity options provide monitoring, management and shutdown capabilities over network

Cost savings and sustainability

- High level of system efficiency leads to utility cost saving, extension
 of battery run times and cooler operating conditions within the UPS,
 which extends the life of components.
- As the compact 9390 can be installed against back and side walls, customers have more location options, installation is faster and easier, deployment costs are lower and more valuable data centre space can be saved for future needs.
- A single technical platform used in Eaton's three-phase UPS products guarantee easy upgrades, similarity or service trainings and documentation, thus lowering total cost of ownership.
- A range of service agreement options can be easily customized for customers needs and budget.
- Eaton uses sustainable materials and highly efficient manufacturing technology, thus generating dramatic savings in carbon footprint as compared to competitive UPS systems.

Eaton 9390M UPS 40-160 kVA Technical Specifications

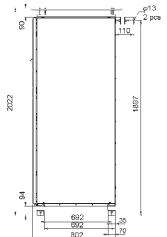
TECHNICAL SPECIFICATIONS

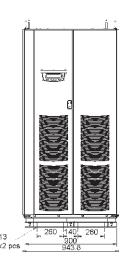
UPS or	ıtput pov	ver rating (0,	9 p.f.)						
kVA	40	60	80	100	120	160			
kW	36	54	72	90	108	144			
Genera	al								
Efficiency in double conversion mode (full load)			94%	94% (without transformer)					
Efficiency in double conversion mode (half load)			92,5	92,5% (without transformer)					
	uted para nc techn	allelling with ology	6						
Field u	pgradeal	ole	yes						
Inverter/rectifier topology			tran	transformer-free IGBT with PWM					
Audibl	e noise		<65	dB					
Colour			RAL	7035					
Input									
Nominal voltage rating (configurable)		380,	380, 400, 415 V 50/60 Hz						
With external transformer		e.g.	e.g. 230, 440, 480, 690 V						
Input voltage range			Low -15% at 100% load/-30% at 50% load without battery discharge; High +10%/max +20%						
Input f	requency	range	45-6	5 Hz					
Input p	ower fac	ctor	0,99						
Input l'	THD		less	than 4,5%)				
Soft st	art capal	oility	Yes						
Interna	ıl backfe	ed protection	Yes						
Output									
Nominal voltage rating (configurable)			380,	380, 400, 415 V 50/60 Hz					

e.g.	230,	440,	480, 6	90 V		
			near l	oad); <	<5% (re	ference non
0,9	(e.g.	72 k\	V at 8	0 kVA)	
0,7	laggi	ng -	0,8 lea	ading		
Maintenance free VRLA batteries, NiCd						
ABI	M te	chnol	ogy o	r Floa	t	
Opt	ional					
480	V (4	0 x 12	2 V, 24	0 cells	5)	
40	60	80	100	120	160	
10	20	20	30	30	40	
					80	
	<3% line 0,9 0,7 Ma ABI Opt 480	<3% (100 linear loo 0,9 (e.g. 0,7 laggi Mainten ABM ter Optional 480 V (44 40 60	<3% (100% linear load) 0,9 (e.g. 72 kV 0,7 lagging - Maintenance ABM technol Optional 480 V (40 x 12) 40 60 80	<3% (100% linear linear load) 0,9 (e.g. 72 kW at 8 0,7 lagging - 0,8 lead Maintenance free ABM technology of the company of t	linear load) 0,9 (e.g. 72 kW at 80 kVA 0,7 lagging - 0,8 leading Maintenance free VRLA ABM technology or Float Optional 480 V (40 x 12 V, 240 cells 40 60 80 100 120	<3% (100% linear load); <5% (relinear load) 0,9 (e.g. 72 kW at 80 kVA) 0,7 lagging - 0,8 leading Maintenance free VRLA batteri ABM technology or Float Optional 480 V (40 x 12 V, 240 cells) 40 60 80 100 120 160

Accessories

External battery cabinets with long-life batteries, X-Slot connectivity (Web/SNMP, ModBus/Jbus, Relay, Hot Sync, ViewUPS-X remote display), Hot Sync parallel tie cabinet, integrated manual bypass up to 80 kVA, external maintenance bypass switch


Communications		
X-Slot	4 communication bays	
Serial ports	1 available	
Relay inputs/outputs	5/1 programmable	
Compliance with standa	nrds	


compilance with standards

Classification survey report On request

Standard UPS						
Description	Rating	Dimensions (HxWxD)	Weight			
9390-60-U-M	60 kVA / 54 kW	2022x519x808 (+110) mm	363 kg			
9390-80-N-M	80 kVA / 72 kW	2022x519x808 (+110) mm	363 kg			
9390-100-U-M	100 kVA / 90 kW	2022x944x808 (+110) mm	485 kg			
9390-120-N-M	120 kVA / 108 kW	2022x944x808 (+110) mm	485 kg			
9390-120-U-M	120 kVA / 108 kW	2022x944x808 (+110) mm	585 kg			
9390-160-N-M	160 kVA / 144 kW	2022x944x808 (+110) mm	585 kg			
Standard external battery						
Description	Rating	Dimensions (HxWxD)	Weight			
9390-BAT-M-S-40x38Ah	38 Ah	2022x575x808 (+110) mm	740 kg			
9390-BAT-M-S-200	53 Ah	2022x575x808 (+110) mm	1216 kg			
9390-BAT-M-280	83 Ah	2022x1125x808 (+110) mm	1504 kg			
9390-BAT-M-330	94 Ah	2022x1125x808 (+110) mm	1685 kg			
9390-BAT-M-500	130 Ah	2022x1125x808 (+110) mm	2248 kg			

See runtime from the runtime specification.

© 2014 Eaton All Rights Reserved 00DATA1018145 Rev C, November 2014 Eaton is a registered trademark.

All other trademarks are property of their respective owners.